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Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring 
better understanding of pathophysiology and new therapeutic approaches. Here, we ap- plied high-throughput tandem mass 
spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative 
inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography–mass 
spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. 
We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with 
paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the 
host response in sepsis, including changes over time, and identified features relating to etiology, clinical pheno- types (including 
organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and 
outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis. 

 

 

INTRODUCTION 

Sepsis is defined as life-threatening organ dysfunction caused by 
a dysregulated host response to infection (1). Currently, we lack 
effective immunomodulatory therapies to address the high mor- 
tality and global burden of this disease (2, 3). Incomplete knowl- 
edge of pathophysiology and failure to define individual patient 
variation in the nature and timing of maladaptive host responses 
within the heterogeneous clinical syndrome of sepsis currently limit 
the design of clinical trials (3–5). Sepsis subphenotypes informative 
for immune response state, outcome, and therapeutic response 
are 

 

proposed on the basis of clinical, laboratory, and molecular 
stratifiers (6–13). However, establishing the nature of the sepsis 
host response and opportunities to optimally stratify patients to 
deliver precision medicine approaches has been constrained by 
incomplete knowledge of the sepsis plasma proteome. The plasma 
proteome reflects organ function through the secretome and 
tissue leakage products, offering the opportunity to identify key 
media- tors of the sepsis response; potential therapeutic targets; 
and bio- markers of individual variation in pathological state, 
disease severity, and outcome. 

To date, there have been technological limitations to the high- 
throughput application of quantitative assays that are able to cap- 
ture the high dynamic abundance range of proteins in the blood. 
Analysis of the sepsis plasma proteome has focused on mouse 
models, a small number of plasma cytokines and metabolites in 
patients, or mortality prediction and comparison with healthy in- 
dividuals and sterile inflammation, involving relatively small num- 
bers of cases (14–24). 

Tandem mass spectrometry (MS) provides protein measure- 
ments in an untargeted and hypothesis-free manner suitable for 
discovery-led characterization of the sepsis blood proteome. Here, 
we show how, with higher-throughput automated and robust 
methods for sample preparation alongside MS-based data acqui- 
sition and data analysis, it is feasible to analyze >2500 nonde- 
pleted blood plasma samples in a single batch using a single liquid 
chromatography–MS (LC-MS) platform. We report the plasma 
proteome of >1000 adult patients with sepsis at multiple time 
points and integrate this with leukocyte transcriptomics to pro- 
vide insights into the nature of the sepsis response and observed 
clinical heterogeneity. 



 

 

 

RESULTS 

High-throughput MS delineates the plasma proteome at 
scale 

We aimed to characterize the acute sepsis plasma proteome. To do this, 
we analyzed patients with sepsis due to community acquired 

pneumonia (CAP) or fecal peritonitis (FP) admitted to the intensive 
care unit (ICU) and serially sampled during their admission (n = 1189 

patients, 1879 sam- ples) as part of the UK Genomic Advances in Sepsis 
(UK GAinS) study (Fig. 1A and data file S1) (10, 25). The median age was 65 

years [interquar- tile range (IQR), 53 to 75], 54% were male, 64% 
mechanically ventilated, and 59% had shock; the median Sequential 

Organ Failure Assessment (SOFA) score was 6 (IQR, 3 to 8), and 28-day 
mortality was 17% (data file S1). These patients were divided into a 

discovery and a validation set, with additional cohorts as comparator 
groups, including a clinical trial of all cause sepsis requiring 

vasopressors (n = 45 patients, 154 samples), healthy volunteers (HVs) (n = 
152 individuals and samples), and comparison with noninfectious 

causes of inflammation [elective surgery patients before and after 
operation (n = 149 patients, 351 samples)] and with nonin- fected 

ICU patients (n = 76 patients, 76 samples) (Fig. 1A and data file S1). 
Traditionally, MS-based proteomics is a low-throughput technique in 

the range of 10 to 20 samples per day when nanoflow 
ultraperformance liquid chromatography (UPLC) is used to maximize 

sensitivity (26). In this study, we developed a high-throughput 
quantitative proteomics work- flow, using a combination of Evosep One 

high-performance liquid chro- matography (HPLC) and Bruker 
timsTOF Pro (trapped ion mobility spectrometry time of flight) on a 

total of 2612 plasma samples from 1611 individuals (Fig. 1A) in one 
batch across 28 fully randomized acquisition plates to minimize assay 

variability between individuals and cohorts. In total, we acquired 4553 
LC-MS analyses, including a prefractionated, super-depleted (27) 

master pool with continuous data acquisition at a throughput 
equivalent to 100 samples per day in data-dependent acquisi- tion 

mode (DDA-PASEF). The 4553 LC-MS injections comprised 2647 
injections from samples (including 35 duplicates) and 1906 injections 

from library fractions and quality control. The complete dataset 
com- prised 250 million MS/MS spectra matching to a total of 2782 

protein groups. In addition, we injected two nondepleted master 
pool samples every 24 cohort sample injections for subsequent 
identification trans- fer (“match between runs”), monitoring MS 

platform performance/sta- bility and correction for any variability as 
part of quality control (fig. S1). We customized data preprocessing to 

minimize potential techni- cal bias and maximize comparability 
between samples (workflow in fig. S1A). We analyzed raw protein 

intensities derived from Frag- Pipe, identifying 291 proteins reliably 
detected (in ≥50% samples) in at least one biological group, and 
removed 32 sample injections with few proteins detected, 35 
duplicated MS injections or duplicated sample aliquots, five 

samples from excluded patients, and 22 pro- teins affected by cell 
residue contaminations in the plasma (fig. S1, A to E). We used 

variance stabilizing normalization to account for sys- tematic bias 
and applied k-nearest neighbors to impute missing val- ues based 

on the most similar proteins (for 170 proteins detected in 

≥60% of the samples) or imputation by random draw from down- 
shifted normal distributions for the remainder. The processed 
data comprised 269 proteins in 2575 samples from 1598 indi- 

viduals (Fig. 1A). 

 
The proteome profile reveals an axis of severity across 
cohorts 
We first sought to understand variation in plasma protein abundance 
and enrichment for biological processes across all cohorts. Reducing 



 

 

the dimensionality of the data, we found that principal 
component (PC) 1 formed a sample gradient from HVs and elective 
surgery pre- operative cases, to postoperative cases and 
noninfectious critical ill- ness, to sepsis (Fig. 1B). Proteins with high 
positive loadings for PC1 included acute-phase [CRP (C-reactive 
protein), SAA1 (serum amy- loid A1), SAA2 (serum amyloid 2), 
SERPINA1 (serpin family A mem- ber 1, also referred to as alpha-1-
antitrypsin), SERPINA3 (serpin family A member 3, also called 
alpha-1-antichymotrypsin), HP (haptoglobin), and C1RL 
(complement C1r subcomponent like)], S100 proinflammatory 
(S100A8, S100A9, and S100A12), innate im- mune or antibacterial 
[LCN2 (lipocalin 2), LBP (lipopolysaccharide binding protein), and 
USP15 (ubiquitin carboxyl-terminal hydrolase 15)], and 
extracellular matrix (ECM) proteins [TNC (tenascin C), MMP2 
(matrix metalloproteinase-2), COL1A2 (collagen type I alpha 2 
chain), and COL6A1 (collagen type 6 alpha 1 chain)], whereas lipid 
transport protein APOM (apolipoprotein M) had a high negative 
loading (Fig. 1C). We identified protein clusters on the basis of 
protein-protein interactions that were enriched for biological pro- 
cesses involving ECM, coagulation, lipid metabolism, acute-phase 
response, and neutrophil degranulation (fig. S1F). 

We further analyzed functional groupings by deriving protein set 
en- richment scores using gene set enrichment analysis. We 
analyzed the resulting matrix by principal components analysis (PCA) 
and found that PC1 showed a gradient across sample cohorts with 
highest loadings for antimicrobial humoral response, cell chemotaxis, 
and positive regula- tion of response to external stimulus (toward 
sepsis/severe disease) and for lipoprotein metabolic process (toward 
nonsepsis controls). PC2 in- volved regulation of B cell activation and 
Fc receptor signaling pathway (Fig. 1D). 

We also derived protein coexpression networks using all 
samples from the cohorts, grouping 184 proteins into 16 
coexpression mod- ules that varied by comparator cohort and 
were enriched for acute- phase proteins (blue module, higher in 
sepsis), plasma lipoprotein assembly (yellow, higher in HVs), platelet 
degranulation (brown, high- er in sepsis), and immunoglobulins 
(black, higher in sepsis; purple, higher in noninfected ICU patients; 
and magenta, higher in sepsis and noninfected ICU patients) (Fig. 
1, E and F, and fig. S1G). 

 
Sepsis is associated with a distinct plasma proteome profile We 
proceeded to investigate differential protein abundance and path- 
way enrichment in sepsis versus other contexts (Fig. 2A). Here and 
subsequently, sepsis refers to the patients with CAP/FP sepsis ad- 
mitted to ICU in the UK GAinS study unless stated otherwise. 
Across the six sepsis-comparator group contrasts in the discovery 
and validation cohorts (Fig. 2B), we found 11 proteins differentially 
abundant in all contrasts, all with highest abundance in sepsis. 
These involved the acute-phase response (CRP, LCN2, SERPINA1, 
and HP), ECM (MMP2, COL6A1, and TNC), protection from tissue 
damage (SERPINA1, HP, and TNC), neutrophil function (LCN2, 
MMP2, SERPINA1, S100A9, and S100A12), cytokine production 
(LCN2, MMP2, USP15, SERPINA1, HP, TNC, and S100A12), and 
galactose metabolism (B4GALT1, beta-1,4-galactosyltransferase 1) 
(Fig. 2, C and D, and fig. S2A). Elastic net prediction models based 
on protein differences in the discovery cohort could distinguish 
be- tween the validation populations [area under curve (AUC)] 

(95% confidence interval, CI) = 100.0% (99.9 to 100.0%) for 
Sepsis_ICU versus HV; 96.9% (94.6 to 99.2%) for Sepsis_ICU versus 
PostOp], illustrating that protein differences were stable across the 
different patient cohorts. 
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Fig. 1. Study overview and sample differentiation by plasma proteome. (A) Study design, workflow, and cohorts, with study name, numbers of individuals assayed (n), and number of 

samples (in brackets). Qc, quality control. (B) Pca based on protein abundance in all samples, showing Pc1 versus Pc2 with 95% data ellipses (assum- ing a multivariate t distribution). (C) 
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Protein loadings on Pc1 and Pc2. (D) Pca of enrichment score matrix on all samples from gene set enrichment analysis using protein abundance for single samples. arrows, gene ontology 

biological processes (top 8 loadings Pc1 and Pc2), length scaled to loading. (E and F) Protein coexpression network from weighted gene coexpression network analysis. (e) Module network, 

with edge weight denoting topological overlap between connected nodes; node size denoting within-module connectivity. (F) relationship of the coexpression modules with cohorts, 

showing the mean of module eigengenes. Patient numbers for (B), (d), and (F) are as shown in (a). 
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Fig. 2. Sepsis-specific proteomic response. (A) Schematic diagram of analyses shown in Figs. 2 to 4. (B) contrasts made between sepsis and comparator groups. n, number of individuals. 

(C) Venn diagram of differentially abundant (Fdr < 0.05 and |Fc| > 1.5) proteins overlapping between contrasts. (D) Summary heatmap of mean protein abundance in sepsis and 

comparator groups, scaled by row. a total of 94 proteins differentially abundant in any of the six contrasts in (a) are included, with Fdr thresholds shown; 11 proteins differentially 

abundant in all contrasts shaded yellow. only the first available samples per patient with sepsis were included. (E) Pathway enrichment of differentially abundant proteins. Terms 

significantly enriched in all discovery cohort contrasts (Fdr < 0.05) shaded in yellow. horizontal bars indicate 95% cis of log2(odds ratio). GoBP, gene ontology biological process. 
 

More specifically, compared with HV, we found that 53 proteins 
were differentially abundant [false discovery rate (FDR) < 0.05, fold 
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change (|FC|) > 1.5] in both the discovery and validation cohorts 
(Fig. 2C and fig. S2B). Proteins more abundant in sepsis were impli- 
cated in the acute-phase response (CRP, SAA1, and SAA2), coagula- 
tion process [VWF (Von Willebrand factor), FGB (fibrinogen beta 

chain), and FGA], and immune or immune-regulatory functions 
[LBP, S100A9, FGL1 (fibrinogen-like protein 1), ORM1 (alpha-1- acid 
glycoprotein 1), and CD14 (cluster of differentiation 14, mono- cyte 
differentiation antigen], whereas abundances of apolipoproteins, α-
2-HS-glycoprotein, hepatocyte growth factor activator, plasma 
serine protease inhibitor (SERPINA5), TTR (transthyretin inhibited 



 

 

 

by inflammation), and transcription regulator protein BACH2 (reg- 
ulates apoptosis and adaptive immunity) were reduced. 

Comparing sepsis against sterile inflammation among postoper- 
ative samples from elective surgery or among noninfected ICU pa- 
tients, we identified 14 and 14 proteins as differentially abundant 
in both the discovery and validation sepsis cohorts, respectively 
(Fig. 2C and fig. S2B). These included HP, TNC, B4GALT1, and 
S100A12 (versus postoperative surgery) with FCN2 (ficolin 2) not 
seen in sepsis versus HV contrast and S100A9, HP, SERPINA1, and 
B4GALT1 (versus noninfected ICU cases). Among the 11 proteins 
differentially abundant in all six sepsis-comparator group contrasts, 
CRP and S100A9 were also identified in the sterile surgery response 
comparing post- against preoperative samples, with the remaining 
nine proteins reflecting a more sepsis-specific response. 

We then identified biological pathways consistently enriched in 
the sepsis contrasts. In the discovery cohort, sepsis differed from all 
comparator groups in acute-phase response, neutrophil 
degranula- tion, regulation of insulin-like growth factor (IGF) 
transport and uptake by IGF binding proteins, innate immune 
system, and post- translational protein modification (Fig. 2E). 
Immune and metabolic processes that differed in sepsis versus HV 
but were not different between sepsis and postoperative patients 
included Toll-like recep- tor signaling, clotting, and interleukin-4 (IL-
4) and IL-13 signaling. These enriched terms were replicated in the 
validation cohort. 

 
Specific plasma protein subsets associate with sepsis severity, 
clinical covariates, source, and progression 
We then investigated whether specific plasma proteins were associ- 
ated with particular clinical features of the sepsis response, combin- 
ing samples from the sepsis discovery and validation cohorts. We 
first analyzed overall variance in the proteome within patients with 
sepsis. The largest component of variance, PC1, showed significant 
(FDR < 0.05) positive correlations with features relating to illness 
severity (fig. S2, C and D). In terms of individual plasma protein 
abundance, we identified a protein set [including PTGDS (prosta- 
glandin D2 synthase), B2M (beta 2 microglobulin), CFD (comple- 
ment factor D), LCN2, VWF, COL6A1, USP15, MMP2, COL1A2, 

CD14, PLTP (phospholipid transfer protein), and CRP] highly cor- 
related with clinical variables reflecting more severe illness, includ- 
ing total SOFA, Acute Physiology And Chronic Health Evaluation 
(APACHE), occurrence of shock or renal failure, and prothrombin 
time; whereas a second set [including SERPIND1, C3 (complement 
component 3), APOA1 (apolipoprotein A-I), HRG (histidine-rich 
glycoprotein), KNG1 (kininogen-1), and VTN (vitronectin)] had 
strong negative associations (Fig. 3). We found five proteins (CRP, 
LCN2, USP15, COL1A2, and MMP2) that were significantly more 
abundant (FDR < 0.05 and FC > 1.5) in patients with FP compared 
with CAP (fig. S3A). Within CAP, LCN2, which limits bacterial growth 
by sequestering iron-containing siderophores (28), showed higher 
abundance in bacterial compared with viral infections (28). 

Using the protein coexpression modules identified from all cohorts, 
we found that specific modules were significantly (FDR < 0.05) correlat- 
ed with comparator group contrasts and with specific clinical variables 
(Figs. 2A and 4, A to C). For example, the blue module, enriched for 
acute-phase response proteins and positively correlated with sepsis 

in all comparator contrasts but that did not associate with mortality, 
showed modest association with organ dysfunction and the strongest 
association with high temperature. The tan module, containing S100 
family proteins and enriched for neutrophil degranulation, showed a 



 

 

positive correlation with sepsis, sepsis severity, and acute 
respiratory distress syndrome. The green-yellow module 
comprising many ECM proteins also positively correlated with 
sepsis and showed a stronger positive correlation with severity, 
together with renal impairment, lym- phopenia, low temperature, 
increased mortality, and greater age. The red module (complement 
activation) was associated with sepsis but with less severe disease. 
Lipoprotein metabolic processes, reflected by the yellow module, were 
negatively correlated with sepsis and with severity and mortality of 
the patients with sepsis. 

For coexpression modules that correlated with both 28-day 
mor- tality and SOFA scores, we applied mediation analysis to 
understand the potential causal relationships between these 
proteomic features and patient outcomes and to determine 
whether these influences are exerted through the dysfunction of 
specific organs. Using linear me- diator models and generalized 
linear outcome models, we tested the influence of each of the 
coexpression modules on mortality, medi- ated by either the total 
SOFA or individual organ scores. 

This analysis showed that the effect of proteomic features on 
mortality is, in many cases, mediated by organ dysfunction, with six 
of the eight modules tested influencing the outcome both directly 
and indirectly through at least five of the organ system SOFA scores, 
involving hemostasis, negative regulation of endopeptidase 
activity, lipoprotein assembly, immunoglobulins, and neutrophil 
degranula- tion (Fig. 4D and fig. S3B). Other modules showed a 
more organ- specific effect. For example, the effect of more 
severely depleted complement (red module) on increased 
mortality was mediated by alternations in renal and neurological 
dysfunction (as measured by respective SOFA scores) but not the 
function of other organs. 

Direct effects were stronger than the mediated effects except 
for models testing the total SOFA score or the ECM proteins 
(green- yellow module). This observation is consistent with individual 
organs mediating part of the effect and the rest being driven by 
direct mech- anisms and with the total SOFA score representing 
the summed ef- fect of multiple organ failure, which mediates a 
large proportion of the proteomic effect on mortality. ECM 
proteins showed a strong correlation with the cardiovascular and 
renal SOFA components (Fig. 4A), which corresponded to larger 
mediated effects on mortal- ity for these two organs than for 
direct effects. On the other hand, the analysis indicates that the 
positive effects of neutrophil degranu- lation proteins (tan 
module) and the negative effect of proteins regu- lating 
hemostasis (turquoise) on outcome are less mediated through 
particular organ dysfunction. 

Among patients with sepsis who had serial samples, 12 of 16 coex- 
pression modules showed a change between ICU admission, day 3, 
and/ or day 5 using paired samples (fig. S3C and table S1). The blue 
(acute- phase), red (complement activation), and green-yellow (ECM) 
modules showed a consistent decrease over time from admission, and 
the change in green-yellow module from day 1 to day 5 positively 
correlated with the change in total SOFA score (FDR = 0.0005, ρ = 0.33 
Spearman). 

To further understand the extent to which organ failure and 
tissue damage contributed to particular circulating proteins in septic 
plasma, we used the protein tissue origins inferred by Malmström et al. 

(29) from constructing a murine protein tissue atlas. Within the 153 
homologous proteins that overlapped between our processed data 
and their plasma dataset, most (n = 118) were predicted to originate 
from plasma, encom- passing many classical plasma proteins (fig. S3D). 
There were 23 non- plasma proteins with an even distribution across 
the blood cell types or other heavily vascularized organs (denoted as 
“Common”) and a small number (n = 12) showing a more specific origin. 
Some of these proteins 
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Fig. 3. Correlation of sepsis plasma proteome with clinical characteristics. heatmap of correlations between 66 clinical characteristics (data file S1) and protein abun- dance (n = 68 proteins 

shown), using the first sample per patient with sepsis (n = 1182). 0/1 indicates absence/presence of trait. Samples from the sepsis discovery and validation cohorts were combined for 

this analysis. 

 

with a nonplasma tissue/cell specificity, including PTGDS, COL6A1, 
TTR, LUM (lumican), and S100A8, were among the proteins strongly 
correlated with sepsis severity and mortality, suggesting greater cell ne- 
crosis and tissue damage in the more severely ill patients. 

 
Sepsis subphenotypes can be identified from the plasma 
proteome 
We next investigated whether the plasma proteome was 
informative for defining sepsis subphenotypes. Consensus 
clustering on the pro- tein intensities for the sepsis discovery 
cohort using all time points identified three subgroups, which we 
denote as sepsis plasma proteome- based clusters (SPC1/2/3). These 
represented the optimal cluster stability and number shown by 
cumulative distribution of the con- sensus index and were 
independent of relatedness between serial samples (Fig. 5, A and 
B, and fig. S4, A and B). 

Patients in SPC1 had more severe illness (reflected in SOFA 
scores and occurrence of shock and renal failure; Fig. 5C and ta- ble 
S2) and significantly higher mortality than those in SPC2 and SPC3 
at both 28 days [SPC1 versus 2+3 hazard ratio (HR) (95% CI) 

= 2.5 (1.7 to 3.7), P = 1.3 × 10−6; fig. S4C and table S3] and 6 months 
[HR = 2.3 (1.7 to 3.2), P = 5.4 × 10−7; Fig. 5D] after sampling. Pa- 
tients in SPC3 were younger than those in the other two clusters, 
and those in SPC2 had lower APACHE scores and intermediate 
lymphocyte and monocyte counts among the clusters (fig. S5A and 
summary statistics provided in table S2). SPC1 was enriched for pa- 
tients with FP and earlier time point samples. Patients with CAP 
who clustered as SPC1 had worse respiratory function and required 
more respiratory support than those who clustered as SPC2 or SPC3, 
indicating that SPC1 identifies more severely ill patients, including 
after accounting for the original source of sepsis. 
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Fig. 4. Variation within sepsis plasma proteome. (A) heatmap of Spearman’s correlation between coexpression module eigengenes, group contrasts, and clinical vari- ables using first 

sample per patient with sepsis (n = 1182). row order aligned to Fig. 3. (B and C) Balloon plots of pathway enrichment for module member proteins (module size shown as n) using 

reactome (B) and GoBP (c) annotations. order of coexpression modules aligned to (a). (D) Summary heatmap of mediation analysis test- ing SoFa scores as mediators and coexpression 

module eigengenes (Mes) as independent variables. SoFa-Me pairs without a significant (Fdr < 0.05) correlation in (B) were not tested for the causal mediation effect and grayed out. 

 

Overall, more plasma proteins were differentially abundant when 
comparing SPC1 than SPC2 or SPC3 to HV (81, 74, and 55 proteins for 
SPC1, SPC2, and SPC3 patients with sepsis, respectively), in- cluding 
immunoglobulins and apolipoproteins specific to SPC1, en- 
richment for phagocytosis and positive regulation of B cell activation 
in SPC1, and lower abundances of immunoglobulins in SPC2 (fig. S5, B 
and C). Comparing SPC1 with SPC2 or with SPC3, we observed 
relatively greater activity of immune pathways, including interleu- 
kin signaling, Fc-γ or Fc-ε receptor signaling, leukocyte migration, 
complement activation, and ECM organization, and lower activity 

of lipoprotein metabolic processes (Fig. 5, E and F). 

 
Proteomic patient subgroups are reproducible and involve specific 
pathways and biomarkers 
To validate and further characterize these subgroups, we developed 
SPC prediction models based on the sepsis discovery cohort (fig. S6A). An 
elastic net model with 181 predictors selected from 269 input 
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candidates performed best in terms of test set accuracy [91.4%, 
test set n = 244, for each SPC area under the receiver operating 
charac- teristic (AUROC) curve ≥95%, sensitivity and specificity 
≥85%; fig. S6, B and C]. We applied this model to the sepsis 
validation co- hort (n = 624 samples from 394 patients) to derive 
the SPC assign- ments, which replicated the associations with 
mortality (Fig. 6A, fig. S7A, and table S3) and measures of severity 
including lactate, cell counts, vasopressor and renal support, and 
SOFA scores (Fig. 6B and fig. S7B). Differential abundance and 
pathway enrichment anal- ysis between the validation cohort 
clusters and HV showed strong concordance with the discovery 
cohort (fig. S7, C to E). We further tested cluster prediction based 
on a small number of informative protein biomarkers. We derived 
a new minimal elastic net model with eight predictors [USP15, 
COL1A2, APOA2, MAP1A (microtubule-associated protein 
1A), GNMT (glycine N- methyltransferase), TSPAN11 
(tetraspanin-11), LCP1 (lymphocyte cytosolic protein 1, L-plastin), 
and ALB (albumin)], which successfully 
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Fig. 5. SPCs in discovery cohort. (A and B) consensus clustering (1236 samples from n = 788 patients). (a) cluster dendrogram and heatmap of consensus index (fre- quency of the sample 

pair being in the same cluster) for three clusters with % samples for each SPc noted. (B) cumulative distribution function (cdF) curves of the con- sensus index for increasing cluster number 

(k). (C) Bar plots of representative clinical variables between SPcs (x axis). Bar height represents proportion of each value of the variable. age: SPc1 median 67 years (iQr, 56 to 77), SPc2 67 (53 

to 77), SPc3 63 (51 to 74) (Kruskal-Wallis Fdr = 0.014). Total SoFa score: median SPc1 7 (iQr, 5 to 10), 

SPc2 = SPc3 5 (3 to 7), dunn’s Fdr SPc1 versus 2 = 2.3 × 10−10, SPc1 versus 3 = 1.2 × 10−11. Shock: SPc1 = 77%, SPc2 = 49%, SPc3 = 54% (χ2 Fdr = 1.4 × 10−7). renal failure: SPc1 = 38%, SPc2 = 

17%, SPc3 = 16% (χ2 Fdr = 3.4 × 10−8). Proportion FP (of FP+caP): SPc1 = 59%, SPc2 = 28%, SPc3 = 27% (χ2 Fdr = 5.0 × 10−12). (D) Kaplan- 

Meier survival curves by SPc at 6 months after sampling. For patients with multiple samples (day 1/3/5), cluster assignment from the latest available sample was used. Global P values 

from log-rank tests; shading, 95% cis. (E) differential protein abundance between SPcs. (F) GoBP and reactome terms enriched (Fdr < 0.05) in differen- tially abundant proteins. only 

contrasts with enriched terms detected are shown. 
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Fig. 6. Validation and molecular characteristics of sepsis plasma proteome-based clusters (SPCs). (A and B) Sepsis validation cohort. (a) Kaplan-Meier survival curves (n = 392) at 6 

months after sampling. For each patient, cluster assignment from latest available sample were used. (B) Bar plots comparing categorical clinical variables between SPcs. (C) SPc movement 

days 1 to 5 of icU admission (n = 346 patients with sepsis with a day 1 and at least one subsequent sample available, discovery and validation cohorts combined). Flow widths are proportional 

to number of patients with the corresponding SPc transition and are color coded according to starting SPc. (D and E) differential abundance analysis between SPcs using a Qe-hF mass 

spectrometer (d) or a luminex immunoassay (e) in subsets of sepsis samples. (F) Sum- mary of molecular characteristics for each SPc (see table S6). red and blue arrows indicate higher or 

lower abundance of the corresponding proteins, respectively. 



 

 

 

classified 79.5% of the discovery cohort test set, with a 72.7% sensi- 
tivity and 94.2% specificity for SPC1. In the validation cohort, this 

prediction showed good consistency with the 181-predictor 
model, with an 82.5% overlapping assignment and AUROCs > 87% (fig. 

S6C). We also investigated patient transitions between clusters. 
Cluster membership was associated with the length of time after 

ICU ad- mission (χ2 P = 0.0012). Analyzing 526 patients with 
multiple time points available, 57.4% of patients changed group 
over time, most frequently from SPC1 to SPC3, consistent with a 

general trajectory 

of recovery (Fig. 6C and table S4). 
To more fully characterize the plasma proteome in these 

clusters, we first profiled a subset of the sepsis samples composed of 
148 sam- ples from 100 patients on a Q-Exactive high field (QE-HF) 
mass spectrometer after depleting 12 highly abundant proteins. 
This per- mitted measurement of many more proteins (1123 
detected in ≥70% samples) but has potential limitations associated 
with the depletion process. We identified 144 proteins with higher 
and 63 proteins with lower abundance in SPC1 versus SPC3 and no 
signal in the two con- trasts with SPC2 (Fig. 6D) while recognizing 
the reduced power to detect differences with smaller sample 
numbers. Pathway enrich- ment analysis again highlighted immune 
response pathways, ECM organization, and lipoprotein metabolism 
differentiating SPC1 and SPC3, along with IL-4 and IL-13 signaling, 
collagen organization, and the cell cycle. Second, we analyzed 65 
cytokines and other signal- ing molecules in 204 samples from 146 
patients with SPC assign- ments, assayed using the Luminex 
immunoassay. We found greater activity in chemotaxis and IL-6 
regulated pathways in SPC1 versus SPC3 with significantly increased 
(FDR < 0.05 and FC > 1.5) chemo- kines MCP-1 (monocyte 
chemoattractant protein-1), IL-8 (interleu- kin 8), and MIP-3α 
(macrophage inflammatory protein 3 alpha); cytokines involved in B cell 
proliferation [APRIL (tumor necrosis factor ligand superfamily 
member 13) and IL-6 (interleukin 6)] and immune in- hibitory 
functions [IL-2R (interleukin 2 receptor) and LIF (leukemia inhibitory 
factor)]; and the interstitial collagenase MMP-1 (matrix me- 
talloproteinase-1) (Fig. 6E and fig. S7F). 

Overall, SPC1 was characterized by higher abundance in plasma 
of immune response proteins, including specific cytokines and im- 
munoglobulins, and more collagen and ECM components, implying 
a greater degree of tissue damage in these patients (Fig. 6F and ta- 
ble S5). Lipoprotein metabolism and transport were comparatively 
down-regulated in SPC1. SPC2, by contrast, had lower immuno- 
globulin abundances and B cell signaling pathway proteins, whereas 
in SPC3, interleukin signaling and cytokine concentrations were 
relatively reduced. 

 
Integration of the plasma proteome and leukocyte transcriptome 
reveals components contributing to the sepsis response 

We next sought to maximize the informativeness of the sepsis plas- 
ma proteomics (MS) by integrating with paired white blood cell 
(WBC) transcriptomics [RNA sequencing (RNA-seq)] for 837 sam- 
ples (649 patients) using matrix decomposition (30). We identified 
284 latent components, each comprising vectors of scores (loadings) 
that indicate the contribution of individual proteins or genes linked 
by that component. We proceeded to identify which components 

showed association with disease severity, source of sepsis, clinical 
covariates, and disease subphenotypes, focusing on the 76 compo- 
nents with significant contributions from proteins (based on poste- 
rior inclusion probability > 0.5) (Fig. 7, fig. S8, and data file S2). 



 

 

The component showing the strongest disease severity 
association (component 141) involving contributions from the 
plasma proteome linked less severe disease (lower total SOFA 
score) with proteins im- plicated in lipid biology [APOA1 and PON1 
(paraoxonase 1)] and HRG; differential expression of genes 
enriched for human leukocyte antigen class II; and overall pathway 
enrichment for negative regula- tion of endopeptidase activity, 
platelet degranulation, and regulation of complement activation 
(Fig. 7A). Components 187 and 164, in- volving WBC 
transcriptomic differences in metabolic and immune processes, 
also strongly associated with disease severity (fig. S8, A and B, and 
data file S2). 

Components 266 and 134 correlated with the source of sepsis 
(CAP versus FP) (Fig. 7B, fig. S8C, and data file S2). The most statis- 
tically correlated component involving plasma proteins 
(component 266) linked contributions from genes and cognate 
proteins for mul- tiple immunoglobulin variable and constant 
chains and showed en- richment for receptor-mediated 
endocytosis (FDR = 0.016) in FP (Fig. 7B). We also identified 
correlations with time from ICU admis- sion (Fig. 7C, fig. S8, D and 
E, components 241, 106, and 174) in- cluding a component (241) 
that involved proteins PRSS8 (serine protease-8), CD5L (CD5-
antigen like; involved in lipid synthesis and macrophage 
apoptosis), and FN1 (fibronectin; involved in cell adhesion and 
motility) and regulation of chemotaxis and signaling pathways 
indicated by differential gene expression (data file S2). 

The components showing the strongest association with SPCs 
(242, 133, and 204) all involved protein abundances only and impli- 
cated proteins enriched for ECM and metabolism (USP15, COL1A2, 
MMP2, and VWF), complement, and immunoglobulin variable 
chains (Fig. 7D and data file S2). We previously reported WBC 
transcriptome–derived sepsis response signatures (SRS) 
associated with differential outcome and response to therapy (10, 
31), includ- ing patients with the SRS signature 1 (SRS1) who show 
granulopoi- etic dysfunction, relative immune compromise, and 
high mortality (12, 13). Most components associated with SRS did 
not include con- tributions from proteins (fig. S8, F and G, 
components 92 and 232), but one component (160) 
demonstrated that SRS1 was associated with contributions from 
proteins including COLEC11 (collectin subfamily member 11; role 
in innate immunity and apoptosis), CRP, DEFA1 (human alpha 
defensin 1), LBP, ECPAS (Ecm29 proteasome adapter and scaffold 
protein), and CPN2 (carboxypeptidase N sub- unit 2), along with 
genes enriched for secreted soluble factors, G protein–coupled 
receptor ligand binding, neutrophil degranulation, and 
immunoregulatory interactions (Fig. 7E). 

 
Transcriptomic and proteomic profiling reveal complementary but 
distinct sepsis subphenotypes and response states 

We further explored the relationship between plasma proteome- 
and leukocyte transcriptome–derived sepsis subphenotypes by 
analyz- ing 1016 patients (1361 samples) with both SPC and SRS 
assignments. Considering the first available time points, we found that 
70% of SPC1 patients were also assigned to SRS1 in the discovery 
cohort, compared with 37 and 34% in SPC2 and SPC3, respectively 
(71, 48, and 31% in validation cohort) (χ2 P < 0.0001; Fig. 8, A and B). 
There was great- er likelihood of transition from SPC1 or SRS1 to 

another state than in the opposite directions (fig. S9, A and B). 

We identified differentially abundant proteins between SRS groups 
(Fig. 8C), some of which overlapped with the proteins discriminat- 
ing SPC1 from SPC2+3 (Fig. 8D), including higher abundance of CRP, 
LCN2, USP15, COL1A2, SAA2, MMP2, S100A8, TNC, and S100A12 

in both SRS1 and SPC1. On the other hand, a set of immunoglobulins, 
HP and APOA2, differed only between SPCs and SAA2 only in the 

SRS contrast. Gene expression differences between SRS groups and 
SPC groups were strongly correlated (fig. S9C). Pathways enriched 

in the differential proteins and genes showed shared and specific fea- 
tures (table S6). These included cytokine signaling and innate im- 

munity inferred from higher-abundance proteins in both SRS1 and 
SPC1, together with neutrophil degranulation and oxidation-reduction 
(up-regulated) and adaptive immune response and T cell costimula- 

tion (down-regulated) in both SRS1 and SPC1 from gene expression 
analysis. Differences included major histocompatibility complex class II 

genes down-regulated uniquely in SRS1 and interferon signaling 
and cell division terms only enriched in the SPC analysis (table S6). 

Lastly, given that SRS1 and SPC1 both associated with poor out- 
come (Fig. 8E), we tested whether the two classifications can be com- 

bined to further inform risk stratification. We found that the 
patients assigned to both SRS1 and SPC1 (~11% patients) had the 

highest mor- tality rate of 33.3% at 28 days (31.7% in validation 
cohort), HR = 3.9 (95% CI 2.3 to 6.7), P < 0.0001 (discovery) [HR = 

3.0 (1.5 to 6.0) 

P = 0.002 (validation)] versus SPC3 non-SRS1 patients (~43%) who had 
the lowest mortality of 10.4% (12.8% in validation cohort) (Fig. 8F and 
fig. S9, D and E). 
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Fig. 8. Interaction of proteomic (SPC) and transcriptomic (SRS) patient subgroups. (A and B) overlap in SrS and SPc assignments in patients with sepsis by (a) patient numbers and (B) 

proportions. First available samples per patient used. (C and D) Protein differential abundance analysis for SrS (c) and SPc (d). (E) Multivariate cox pro- portional hazard regression on 28-

day mortality considering both SPc and SrS assignments. aic, akaike's information criterion. (F) Kaplan-Meier curves comparing sur- vival at 6 months after sampling by SPc, SrS, or both 

assignments combined. (e) and (F) cluster assignments of the last sample (within icU day 1/3/5) per patient with both SrS and SPc assignments were used. 



 

 

 

 

 
DISCUSSION 

In this study, we have generated a comprehensive map of the 
human sepsis plasma proteome in terms of sample numbers, 
quantification methodologies, and comparator groups. We 
developed and applied a mass spectrometry–based approach at 
scale to understand how sep- sis differs from health, sterile 
inflammatory states, and noninfected critical illness as well as to 
reveal and define heterogeneity in the sep- sis response. The sepsis 
plasma proteome reflects mechanisms un- derlying the 
dysregulated host response to infection as well as the wider 
consequences of organ dysfunction (reduced metabolism and 
excretion for example) and tissue injury. Proteomics therefore pro- 
vides an opportunity to identify aspects of pathogenesis together 
with measures of organ dysfunction and disease severity. 

We identified specific proteins, coexpression modules, and net- 
works that are differentially abundant in sepsis. These involved in- 
nate immunity, acute-phase response, neutrophil function, 
cytokine production, lipometabolism, tissue damage protection, 
and ECM or- ganization. By including multiple nonsepsis controls, 
we showed that these signals were consistently associated with 
sepsis. Our large sep- sis cohort with deep clinical phenotyping 
allowed us to determine that more severe illness is associated with 
specific proteins as well as modules enriched for S100 family 
proteins and extracellular matrix proteins (positive correlation), 
complement, and lipoprotein meta- bolic proteins (negative 
correlation). Some key proteomic markers of specific organ 
function showed correlations with the corresponding clinically 
accepted criteria as well as with overall mortality. For ex- ample, 
apolipoproteins, mainly synthesized in the liver, were corre- lated 
with bilirubin, alanine transaminase, and prothrombin time, and 
protein markers of declining renal function [PTGDS, B2M, CST3 
(cystatin C), and LCN2] (32) had associations with all nine clinical fea- 
tures tested that reflect renal failure as well as positive 
correlations with total SOFA and mortality. These results indicate 
an association between the liver and kidney dysfunction and the 
plasma response proteome. One limitation is that the 
interpretation is limited to the two most common etiologies of 
sepsis (CAP and FP), but at the  

Compared with a supervised strategy of directly modeling on 
clin- ical severity and mortality, which is often confounded by 
multiple contributors to the final cause of death in sepsis, our 
approach of stratifying patients by unsupervised clustering of 
protein abundanc- es or gene expression can effectively divide 
patients into more homogeneous subgroups with shared 
molecular mechanisms or physiology, which consistently associate 
with different risks of mor- tality. This approach may also more 
closely align with biological processes that could be targeted by 
immunomodulatory therapies. Further work is needed to 
understand the relationship of SPC with other transcriptomic and 
clinically defined subphenotypes reported in the literature as well 
as to establish the mechanisms driving the SPCs, whether they are 
reflective of treatable traits, and their thera- peutic utility. Animal 
and human studies, for example, have already highlighted 
lipoproteins as potential therapeutic targets in sepsis 

(36) and COVID-19 (37). Future investigations of the translational 
value of SPC in comparison to, or in combination with, SRS (and 
other biomarker-defined or clinically defined subphenotypes) re- 
quires prospective validation in urgent care settings and 
prospective incorporation into biomarker-led clinical trials where 
patients are allocated to treatment on the basis of testing for 
relevant sub- phenotypes. 

The increasing availability of high-dimensional proteomic data for 
clinical and molecular disease phenotyping requires innovative 
approaches to analyze and integrate such datasets (38, 39). Here, we 
leveraged analytical strategies developed for transcriptomics to in- 
vestigate protein coexpression networks and modules and signa- 
tures of response. We further showed how matrix decomposition 
allows integration of paired plasma proteomic and leukocyte tran- 
scriptomic data, linking information from both datatypes. Our 
results are informative for illness severity and disease group and 
provide evidence that they are functionally related in a particular 
pathogenic process. 

Recent advances in affinity-based proteome profiling platforms, 
including SOMAscan and Olink, have made them important tools in 
omics studies of various critical illnesses. These often comple- ment 
the LC-MS approach by achieving deep detection of thousands of 
proteins (40–42) and other more specific study aims, including 
multiomic profiling (43, 44), measuring the postmortem tissue pro- 
teome (45), and determining changes in protein abundances over 
time (46) 

. The number of proteins measured by SOMAscan are usually much 
larger than an LC-MS–based clinical proteomics study. However, the 
latter analysis of plasma samples allows unprejudiced discovery anal- ysis 
of potential biomarkers without the bias of affinity reagents com- 
promising clinical, patient-specific measurements.



 

 

For example, many proteins included in our cleaned-up data are not 
targeted in the cur- rent SOMAscan panel (47), including top 
proteins distinguishing the SPC2 subset of patients (MAP1A, 
ARHGEF18, HR, TSPAN11, and SAGE2P) or that differentiate 
between sepsis and HV (ORM1 and TTR). In addition, the 
substantially lower costs and sample us- age make LC-MS–based 
analysis more accessible in larger cohort studies. The inclusion of 
>1000 critically ill sepsis patients (>1800 samples) in one batch in this 
work is critical for elucidating the het- erogeneity within our clinically 
defined patient group. The LC-MS approach also retains the potential 
to analyze proteoforms and post- translational modifications and is 
more robust to possible partial degradations of the proteins. 

In this study, we show that medium to high-throughput pro- 
teomics across multiple large cohorts in a single batch is feasible on 
a single LC-MS platform. A simple semiautomatic sample prepara- 
tion strategy in combination with the MS-based analysis of >2500 
clinical, nondepleted plasma samples and a further ~2000 quality 
control and library samples that can be acquired through continu- 
ous measurements at a rate of 100 samples per day now reaches 
throughputs used by other proteomics technologies, such as Olink 
or SOMAscan. Inclusion of regular injections of a matrix pool to 
correct for variability is important; here, this comprised a pool of all 
2612 samples in the study injected every 24 samples analyzed. Al- 
though measured proteome depth is limited because of the 
extreme dynamic range of plasma protein abundance, we achieved 
good cov- erage of the acute-phase proteome and markers of 
disease routinely quantified in single measurement assays such as 
enzyme-linked im- munosorbent assay (ELISA). In subsets of the 
samples, we also used the QE-HF system with depleted samples and 
Luminex assays (equiv- alent to a multiplex ELISA) to cover the 
deeper proteome, which verified the distinction between the 
patient subgroups and provided further information elucidating 
the biology. The throughput, cost effectiveness, and robustness of 
modern LC-MS platforms mean that this technology is now 
competitive with standard clinical practice measurements, such as 
ELISA, for absolute protein quantitation us- ing heavy isotope–
labeled peptide standards, marking a transition from a pure 
discovery tool toward a more clinical point-of-care ap- plication in 
the coming years. 

Study limitations include the detection limit in large-scale clini- cal 
MS studies. Further work is needed to fully establish the com- plete 
sepsis proteome across a wide dynamic range of protein 
abundance and size and to differentiate protein variation (proteoforms) 

(48). Recent advances in data-independent acquisition for 
MS would be compatible with high-throughput proteomics 
platforms and offer future opportunities to increase depth 
and data completeness. More widely, future work using 
MS will require streamlining sample and data processing 
workflows toward clinical certification and point- of-care 
use. Further work is also needed to quantify disease-
relevant tissue-specific proteomes and establish 
pathological mechanisms, recognizing that obtaining 
tissue samples from the critically ill is challenging. 
Biomarker discovery for patient stratification will re- quire 

prospective validation and demonstration of whether they 
can inform specific therapeutic interventions, whereas 
identified pro- teins and pathways in critically ill patients 
represent potential future therapeutic targets. Additional 
work is also required to determine whether the maximally 
informative protein biomarkers can be ap- plied in 
combination with other “omic” platforms and currently 
available clinical or laboratory variables to better stratify 
patients. In conclusion, our study shows the feasibility and 
informativeness of high-throughput proteomics using MS 
as part of a multimodal tool kit for understanding the 
nature of our individual response to severe infection and 
moving toward a more precision medicine approach that 
may also be applicable to other disease states. MATERIALS AND 

METHODS 

Study design 
This was an observational study designed to understand the sepsis 
proteomic response and individual heterogeneity by assaying the 
plasma proteome of multiple sepsis and nonsepsis comparator co- 
horts and integrating with paired leukocyte transcriptomic data. 
Study cohorts included UK GAinS (10, 25) [patients admitted to 
ICU with sepsis (49) due to CAP or FP (50–52)], VANISH (53) (clinical 
trial cohort of all-cause sepsis requiring vasopressors), HVs from the 
Oxford BioBank (54), elective surgery patients [X-MINS 

(55) and BIONIC (56)], and noninfected ICU patients [MOTION 
(57), MONOGRAM, and TACE (58)] with cohorts described in the 
Supplementary Materials (numbers of individuals and samples giv- 
en in data file S1). Our processed timsTOF sepsis proteomics data 
were split into two nonoverlapping cohorts for some analyses. A dis- 
covery cohort (n = 1041 patients, 1590 samples) was used for inter- 
rogation of sepsis-specific proteome profiles and proteome-based 
sepsis subphenotypes, which were then investigated in the valida- 
tion cohort (n = 557 patients, 985 samples). Sample sizes were de- 
termined by available patient and sample numbers recruited into 
each of the study cohorts, with statistical power calculation based 
on a smaller-scale sepsis proteomics dataset indicating that a 
minimum of 171 biological replicates was needed in each group to 
detect dif- ference at 80% power and FDR ≤ 0.05 for 70% of the 
analytes in the sepsis-control contrast and 269 biological replicates 
for the within- sepsis contrast. From the whole timsTOF dataset, 32 
measurements that failed quality control, 35 duplicate 
measurements, and five sam- ples from excluded patients 
(because of withdrawal from study or no clinical information) were 
excluded from the processed data. No sample was further 
excluded in the downstream analysis. The pro- cessed timsTOF MS 
dataset did not contain repeated measurements of the same 
samples. For MS data acquisition, samples from all co- horts were 
fully randomized across the acquisition plates. Data gen- eration 
was performed on these plates without distinguishing the study 
cohort or knowing the SPC clusters at the time of generation. 
 

Patients from the GAinS or OBB studies were separated into the 
discovery or validation cohorts by random draws. 
 



 

 

Statistical analysis 
Differential abundance analysis for proteins and differential expres- 
sion analysis for genes were performed by fitting the intensities in 
linear models using the limma R package (59), using only the first 
available sample of each patient and including age and sex as covari- 
ates. The Benjamini-Hochberg procedure was used to adjust for 
multiple testing. Significance of differential abundance was defined 
as FDR < 0.05 and FC > 1.5 unless otherwise specified. Compari- 
sons between the pre- and postoperative samples are paired and 
with no additional covariates. All tests are two-sided. 

Cytokine concentrations measured by Luminex assay were com- 
pared by Wilcoxon rank sum tests (Mann-Whitney tests) using the 
first available sample of each patient. Categorical clinical variables 
were compared using χ2 tests without Yate’s correction. Numerical 
clinical variables were compared between two groups using Wil- 
coxon rank sum tests and compared between three groups using 
Kruskal-Wallis test and Dunn’s post hoc tests. Only the first avail- 
able samples after ICU admission of each patient were included in 
comparing clinical variables. 

Survival differences were assessed and Kaplan-Meier curves plot- 
ted using the R packages survival and survminer (60, 61). The input 
data were a data frame specifying the time to event from the sam- 
pling day, the event (death or end of 28-day or 6-month observation), 
and the patient subgroups. For patients with multiple time points 
sampled, cluster assignment from the last available sample within 5 
days of ICU admission was used. P values were given by log-rank 
tests. HRs and the CIs were calculated using univariate (SPC) or mul- 
tivariate (SPC and SRS) Cox proportional hazard models. 

Methods for LC-MS/MS using the high-throughput Evosep One– 
Bruker timsTOF Pro platform, leukocyte whole-genome expression 
profiling, timsTOF protein identification and quantification, tim- 
sTOF data preprocessing, QE-HF MS, and other statistical analyses, 
including unsupervised clustering and matrix decomposition, are 
described in Supplementary Materials and Methods. 
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